Functional imaging of multidrug resistance in breast cancer.
نویسندگان
چکیده
Intrinsic or acquired multidrug resistance is the major cause of treatment failure in many human cancers. Multiple cellular mechanisms may contribute to the development of multidrug resistance including overexpression of P-glycoprotein (Pgp). The use of 99mTc-labeled lipophilic cations, which are transport substrate of Pgp, raised the possibility to predict the tumor response to treatment and to identify patients who will become refractory to subsequent therapy. Among these agents, 99mTc-MIBI is the most widely evaluated tracer and may serve as a paradigm of this class of compounds. In particular, many studies have shown the prognostic value of 99mTc-MIBI scan in different types of malignancy including breast cancer and the correlation with the expression of Pgp. However, additional mechanisms of cell resistance, mainly involving alterations of apoptosis, may also affect 99mTc-MIBI uptake in tumors. In particular, overexpression of the anti-apoptotic protein Bcl-2 prevents tumor cells to enter apoptosis and inhibits tracer accumulation into mitochondria. Therefore, while an absent or reduced early tracer uptake in large breast carcinomas reflects the existence of a defective apoptotic program, an enhanced tracer clearance in 99mTc-MIBI positive lesions reflects the activity of drug transporters such as Pgp. The existence of two different mechanisms underlying the predictive role of 99mTc-MIBI scan may be important to establish whether individual patients may benefit from Pgp inhibitors or Bcl-2 antagonists.
منابع مشابه
Molecular mechanisms involved in multidrug resistance in breast cancer therapy
Breast cancer is the most prevalent cancer in women. Chemotherapy is the main strategy in the treatment of this disease especially in the advanced form of the disease. Despite the recent progress in the development of new chemotherapy, the effectiveness of these drugs has dramatically reduced due to multidrug resistance. The phenotype of multidrug resistance (MDR) can occur through different me...
متن کاملCelecoxib Up Regulates the Expression of Drug Efflux Transporter ABCG2 in Breast Cancer Cell Lines
Elevated expression of the drug efflux transporter ABCG2 seems to correlate with multidrug resistance of cancer cells. Specific COX-2 inhibitor celecoxib has been shown to enhance the sensitivity of cancer cells to anticancer drugs. To clarify whether ABCG2 inhibition is involved in the sensitizing effect of celecoxib, we investigated whether the expression of ABCG2 in breast cancer cell lines ...
متن کاملCelecoxib Up Regulates the Expression of Drug Efflux Transporter ABCG2 in Breast Cancer Cell Lines
Elevated expression of the drug efflux transporter ABCG2 seems to correlate with multidrug resistance of cancer cells. Specific COX-2 inhibitor celecoxib has been shown to enhance the sensitivity of cancer cells to anticancer drugs. To clarify whether ABCG2 inhibition is involved in the sensitizing effect of celecoxib, we investigated whether the expression of ABCG2 in breast cancer cell lines ...
متن کاملNanolipoparticles-mediated MDR1 siRNA delivery reduces doxorubicin resistance in breast cancer cells and silences MDR1 expression in xenograft model of human breast cancer
Objective(s): P-glycoprotein (P-gp) is an efflux protein, the overexpression of which has been associated with multidrug resistance in various cancers. Although siRNA delivery to reverse P-gp expression may be promising for sensitizing of tumor cells to cytotoxic drugs, the therapeutic use of siRNA requires effective carriers that can deliver siRNA intracellularly with minimal toxicity on targe...
متن کاملEffects of Salinispora derived metabolites against multidrug resistance, an in-silico study
Background: Multidrug resistance (MDR) is known to defeat most chemotherapies as one of the main anticancer strategies. The role of overexpression/overactivation of ABC transporters, especially P-glycoprotein (P-gp), in the development of chemotherapy has long been demonstrated. Salinispora is a marine actinomycete genus known for the production of novel bioactive metabolites. Methods: In this...
متن کاملImaging of multidrug resistance in cancer
Primary intrinsic and/or acquired multidrug resistance (MDR) is the main obstacle to successful cancer treatment. Functional molecular imaging of MDR in cancer using single photon or positron emitters may be helpful to identify multidrug-resistant tumours and predict not only those patients who are resistant to treatment, with a clinically unfavourable prognosis, but also those who are suscepti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics
دوره 21 Suppl 1 شماره
صفحات -
تاریخ انتشار 2006